机器学习从认知到实践
- 资料大王PDF
-
0 次阅读
-
0 次下载
-
2024-04-11 20:32:29
微信
赏
支付宝
文档简介:
总目录
Python机器学习实践指南
TensorFlow机器学习项目实战
TensorFlow技术解析与实战
目 录
版权信息
版权声明
内容提要
作者简介
审阅者简介
译者简介
译者序
前言
第1章 Python机器学习的生态系统
1.1 数据科学/机器学习的工作流程
1.1.1 获取
1.1.2 检查和探索
1.1.3 清理和准备
1.1.4 建模
1.1.5 评估
1.1.6 部署
1.2 Python库和功能
1.2.1 获取
1.2.2 检查
1.2.3 准备
1.2.4 建模和评估
1.2.5 部署
1.3 设置机器学习的环境
1.4 小结
第2章 构建应用程序,发现低价的公寓
2.1 获取公寓房源数据
使用import.io抓取房源数据
2.2 检查和准备数据
2.2.1 分析数据
2.2.2 可视化数据
2.3 对数据建模
2.3.1 预测
2.3.2 扩展模型
2.4 小结
第3章 构建应用程序,发现低价的机票
3.1 获取机票价格数据
3.2 使用高级的网络爬虫技术检索票价数据
3.3 解析DOM以提取定价数据
通过聚类技术识别异常的票价
3.4 使用IFTTT发送实时提醒
3.5 整合在一起
3.6 小结
第4章 使用逻辑回归预测IPO市场
4.1 IPO市场
4.1.1 什么是IPO
4.1.2 近期IPO市场表现
4.1.3 基本的IPO策略
4.2 特征工程
4.3 二元分类
4.4 特征的重要性
4.5 小结
第5章 创建自定义的新闻源
5.1 使用Pocket应用程序,创建一个监督训练的集合
5.1.1 安装Pocket的Chrome扩展程序
5.1.2 使用Pocket API来检索故事
5.2 使用embed.ly API下载故事的内容
5.3 自然语言处理基础
5.4 支持向量机
5.5 IFTTT与文章源、Google表单和电子邮件的集成
通过IFTTT设置新闻源和Google表单
5.6 设置你的每日个性化新闻简报
5.7 小结
第6章 预测你的内容是否会广为流传
6.1 关于病毒性,研究告诉我们了些什么
6.2 获取分享的数量和内容
6.3 探索传播性的特征
6.3.1 探索图像数据
6.3.2 探索标题
6.3.3 探索故事的内容
6.4 构建内容评分的预测模型
6.5 小结
第7章 使用机器学习预测股票市场
7.1 市场分析的类型
7.2 关于股票市场,研究告诉我们些什么
7.3 如何开发一个交易策略
7.3.1 延长我们的分析周期
7.3.2 使用支持向量回归,构建我......
评论
发表评论