深度学习:核心技术、工具与案例解析
- 资料大王PDF
-
0 次阅读
-
0 次下载
-
2023-11-19 23:00:49
微信
赏
支付宝
文档简介:
前言
为什么要写这本书
随着国内各个AI峰会的召开,各个开源深度学习框架meetup的火爆举行,深度学习技术的发展正在如火如荼地进行之中,很多公司已经将深度学习技术大范围落地并且应用于生产之中。深度学习的
研发人员已经从最初的通过优化算法,在公开数据集上取得不俗的成绩,转变到如今在应用的引导之下,设计优化深度学习算法并将其用于生产之中。写一本深度学习技术与实用案例类的技术图书是我持
续了很久的想法。由于工作和学习较为紧张,最初只是对参与或学习过的深度学习相关案例进行了总结,但是随着时间的推移,最终我还是打算将其中通用的算法、模块流程以及应用场景抽象出来,进行
适当简化并整理成书,这也算是我对深度学习的一个总结和分享。
深度学习是发源于人工神经网络的一种机器学习模型,它立足于更深的模型,具有更强的拟合能力,在计算机视觉、语音识别、自然语言处理等领域均取得了不俗的成果,并在其他应用场景中也逐步
获得了傲人的成绩。深度学习已成为当下最受关注的人工智能技术,拥有着庞大的社区支持,应用场景与工具支持也日趋完善。
现在越来越多的同行已经了解并且开始应用深度学习技术。但是对于工程师和研发人员来说,市场上还缺少一本关于深度学习的实用案例类图书,很多深度学习初学者和开发人员只能参考网络上零星
的技术博客或文档,这使得学习过程变得零碎且艰难,而本书正是为了解决这些的问题而着意编写的。
本书希望展现给读者一个系统化的视角,秉承大道至简的主导思想,讲解深度学习的基本原理,以及如何在深度学习技术上构建复杂的人工智能应用,帮助读者开启深度学习技术应用之旅。
本书特色
从技术层面上讲,本书介绍了人工智能领域中发展势头正盛的深度学习技术和应用。深度学习作为一种机器学习算法,不仅具有模型结构的灵活性,可快速构建适用于不同领域的模型结构与算法,同
时具有强大的模型拟合能力,能够在GPU等硬件,TensorFlow等软件层框架的支撑下,发挥人工智能解决问题的能力,依托于深度网络的通用学习能力,快捷地构建广受欢迎的人工智能产品。
从适合读者阅读和掌握知识的角度进行结构安排,从深度学习基本概念和机制介绍入手,结合TensorFlow及其相关深度学习框架,构建相应的网络结构实战案例,并在最后结合不同的应用场景构建人
工智能应用。本书所讲内容涵盖较为全面,不仅介绍了基本原理,如何进行深度学习,同时结合应用场景构建应用,还总结了一些实用经验。
书中一些实际操作和应用相关的章节,比较适合人工智能和机器学习开发人员参考,可以作为工作手边书;算法和优化实践方面的章节,则比较适合机器学习和算法工程师,可以分享经验,用于拓展
解决问题的思路。
读者对象
·深度学习与人工智能初学者
·深度学习与人工......
评论
发表评论